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Motivation

• Distribution systems historically lack enough sensor measurements

• Available measurements fail to provide a universal solution involving a wide 
variety of sources

• Fast but sparse (FS) measurements: PMUs, SCADA

• Slow but abundant (SA) measurements: smart meters

• Distribution systems not fully observable

• Hosting capacity for solar generation cannot be accurately estimated

• Unnecessary solar curtailments
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Project Overview

• This project aims to use of Machine Learning for integration and synchronization 
of diverse data sources for distribution system state estimation.
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Problem Statement

Input: 
• FS measurements (node voltage, FS line 

active power, FS line reactive power) each 1 
minute; 

• SA measurements (node active power, node 
reactive power, derived active power of 
unmeasured lines, derived reactive power 
of unmeasured lines) each 60 minutes; 

• network topology as a graph.

Output: 
• predicted SA measurements each 1 minute



Funded by:

This presentation may have proprietary information and is protected from public release.

Problem Statement

• Problem statement:

• Black Lines: observable lines (FS measurements 
and derived measurements from zero injections, 
every 1 minute)

• Red Lines: unobservable lines (derived 
measurements from SA measurements, every 60 
minutes)

• Gray Lines: disconnected lines

• Objective: predict the power injections (SA 
measurements) at all the nodes (every 1 minute) 
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• Existing graph learning methods:

• Masking the power flow features of the unobservable lines; 

• Use the power flow features of the observable lines (FA measurements) to predict the 
nodal injections (SA measurements) directly based on the Graph Neural Network (GNN). 

• Limitations of these methods:

• The methods have a limited performance when there are too many unobservable lines;

GNN

Graph-Learning-Based SA Measurement Prediction

Every 60 minutes

Every 1 minutes
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Correlation Distribution
between Line 104_105 and others

• Motivation of designing a new framework
• Many lines are highly correlated to each other in terms of active/reactive power
• Can we first predict the unobservable lines, so the GNN has a complete input for 

predicting the nodal injections?

Graph-Learning-Based SA Measurement Prediction
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Correlation Distribution
between Line 109_114 and others
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Correlation Distribution
between Line 93_94 and others
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• Framework Overview

• A basic version of the line prediction model has been built. An Edge Graph Convolution 
(EGC) is used to predict active/reactive power of unobservable lines, and a Graph 
Attention Network (GAT) is used to capture the power grid topology information for 
node injection prediction.

GAT

Graph-Learning-Based SA Measurement Prediction

EGC

Every 60 minutes Every 1 minutes
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• Edge Graph Convolution (EGC)

• Construct an edge graph based on the topology graph

• Node in edge graph = Edge in topology graph

• Edge in edge graph = two edges connected to the same node in topology graph

• Adopt Graph Convolutional Network (GCN) on the edge graph

Graph-Learning-Based SA Measurement Prediction

Edge GraphTopology Graph
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• Traditional Graph Attention Network (GAT)

• 1. Apply attention coefficients to calculate relationships between nodes

• 2. Normalization by softmax to reweight the importance of neighbor nodes when doing 
graph aggregation

attention coefficients 

Normalization

Combination of features of Node i and j

Graph-Learning-Based SA Measurement Prediction
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• Our Modified GAT

• 1. Apply attention coefficients to calculate relationships between nodes based on both node 
features and line features

• 2. Normalization by softmax to reweight the importance of neighbor nodes when doing graph 
aggregation

• 3. Only in-degree lines are involved in graph aggregation

• 4. Aggregated line features are also concatenated to node features after node aggregation

attention coefficients 

Normalization

Combination of features of Node i, j and Line ij

Graph-Learning-Based SA Measurement Prediction
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• Three scenarios with different percentages of unobservable lines are simulated.

• Even with some of the line flows are unobservable and cannot be derived based on the 
physical distribution system model (i.e., unobservable system), the model can still achieve a 
relatively low error (much less than 10%)

Test Results on ComEd’s Bronzeville Community Microgrid

Proportions of
Unobservable Lines

Node Prediction (Mean Absolute Error) Node Prediction Error Percentage

Active Power Reactive Power Active Power Reactive Power

10% 1.1559 0.4113 0.57% 0.91%

30% 1.7250 0.4796 0.85% 1.06%

50% 4.8650 1.0425 2.41% 2.29%
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• Line Prediction Results: Line 43-44

Test Results on ComEd’s Bronzeville Community Microgrid
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• Line Prediction Results: Line 59-61

Test Results on ComEd’s Bronzeville Community Microgrid
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• Node Prediction Results: Node 93

Test Results on ComEd’s Bronzeville Community Microgrid
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• Node Prediction Results: Node 37

Test Results on ComEd’s Bronzeville Community Microgrid
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• Next Steps:

• Incorporate time series information;

• Test the performance during topology changing period.

Future Work
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Project Overview

• This project aims to use of ML for integration and synchronization of diverse data 
sources for distribution system state estimation.
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Closed-Loop Operation

• Mutually-assisted measurement predictor 
and state estimator:
• The ML-based measurement predictor 

enhances the system observability and 
measurement redundancy for the robust SE; 

• The robust SE checks the predicted 
measurements against the physical grid 
model, rejects those with plausible errors, 
and estimates the errors as residuals. This 
information will be fed back to the ML-
based predictor to enhance the prediction 
accuracy.
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Test Results on ComEd’s Bronzeville Community Microgrid

• Generation of bad data

Corrupted Node voltage magnitude 

Corrupted line active power Corrupted line reactive power

Corrupted node active power Corrupted line reactive power
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Test Results on ComEd’s Bronzeville Community Microgrid

• The deep learning model uses the measurement residuals of the WLAV state 
estimator to retrain the model and refine the prediction of SA measurements.

• The feedback mechanism significantly enhances the prediction accuracy of the deep 
learning model.

Measurement Prediction accuracy of the DL model 
under different measurement corruption conditions
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Test Results on ComEd’s Bronzeville Community Microgrid

• Results show that the feedback of the robust WLAV estimator can significantly 
enhance the prediction performance of the deep learning model.
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• We propose a graph-learning-based measurement predictor to synchronize 
measurements with different reporting rates in distribution systems.

• The EGC-GAT measurement predictor can infer unobservable line flows and 
nodal injections by capturing variable correlations.

• The robust WLAV state estimation can check the consistency between predicted 
measurements and grid models and provide useful information for enhancing 
the learning-based prediction.

Conclusion
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